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Figure 1. Overview of several cities in our RealCity3D dataset. Each building shape is of LoD2 complexity.

Abstract

Existing 3D shape datasets foster 3D deep learning
research in the vision, graphics, and robotics communi-
ties by motivating research, specifying challenges, and en-
abling model comparisons. However, most existing 3D
shape datasets are comprised of CAD models or point cloud
scans at either object-level or room-level, leaving out a
large source of 3D shape data: real-world cities. Cities
are important because they contain complex shapes such
as skyscrapers, residential buildings, roads, and bridges.
These shapes contain rich details that can be significantly
different from object-level and room-level 3D shapes. Such
inherent domain differences bring challenges to existing
deep learning methods on 3D data, especially unsupervised
ones, therefore inviting additional research in this area.
In this work, we collect and process more than 950, 000
georeferenced 3D shapes from the city of New York, and
demonstrate the performance gap of three unsupervised 3D
deep learning methods on our dataset and existing datasets.
We are also actively working to include other major world
cities and benchmarking more 3D deep learning methods
on this dataset. We will release the dataset and tools to the
public and invite research collaborations on the topic.

1. Introduction
The world we live in is 3D, and our eyes have naturally

evolved to perceive this 3D world. The area of 3D com-
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puter vision has seen great progress in both research and
real applications, thanks to the recent advances in deep rep-
resentation learning of 3D shapes. The increasingly more
powerful but also more data-hungry models have created
needs for large-scale datasets for 3D deep learning. As a
result many large-scale 3D datasets were proposed.

In this paper, we present RealCity3D, a large-scale
data repository of real-world city models containing geo-
referenced 3D building shapes, each represented as a set
of semantically labeled polygon meshes. Such data format
can then be readily converted to either voxels, point clouds,
or multi-view images for potential evaluations of many 3D
deep representation learning methods [6, 14, 9, 17, 2]. De-
spite the enormous progress happening in this field, we see
a potential contribution opportunity to enrich this collection
of datasets with a benchmark that has: 1) a large number
of single 3D objects in the scale of millions and 2) a differ-
ent semantic scene (outdoor) compared to previous datasets,
which are mostly indoor scenes.

2. Related Work

3D deep learning has been an active research area
with considerable recent advances. Multiple large-scale
3D datasets have been proposed to facilitate research and
benchmarking in this research area. One of the early well-
known and frequently used benchmark is the Princeton
Shape Benchmark in 2004 [10] consisting of 6, 670 sin-
gle 3D models, among which 1, 814 are manually classi-
fied into 161 categories. The IKEA dataset in 2013 [5]
is another popular dataset of images and 3D models rep-



resenting typical indoor scenes and contains 759 images
and 219 3D models across around 30 categories. PASCAL
3D+ [16] was proposed in the following year (2014) for 3D
object detection and pose estimation. The dataset has 12
categories of rigid objects, with each containing more than
3, 000 instances. Subsequent datasets include the Prince-
ton ModelNet (2015) [15] with 127, 915 3D CAD models
from 662 categories, covering most common object cate-
gories in the world. The sizes of datasets continued to ex-
plode. ShapeNet [3] contains over three million 3D models
with a core dataset of about 51,300 unique 3D models from
55 common object categories. It also has manually verified
category and alignment annotations.

Apart from the above datasets focusing on 3D mod-
els, some other datasets focus on 3D scenes, taking the
form of RGBD images. An example is the NYU-Depth
V2 dataset (2012) [7] containing video sequences recorded
by depth cameras from a variety of indoor scenes. There
are 1449 densely labeled pairs of RGBD images from 464
new scenes in 3 cities, in which the objects are labeled and
classified. Similarily, SUNRGB-D (2015) [11] is a pop-
ular benchmark consisting of 10, 355 RGB-D scenes in the
training set and 2, 860 in the testing set, with even richer an-
notation information for scene classification, semantic seg-
mentation, object detection and pose estimation. Similar to
the trend in 3D model datasets, the sizes of datasets kept
increasing. In 2017, ScanNet [4] was released with 2.5
million RGBD views in more than 1500 scans and anno-
tated with 3D camera poses, surface reconstructions, and
instance-level semantic segmentation. The second version
of ScanNet was released in 2018 with an extra 100 scans.

3. Data Collection and Processing
In our dataset, all 3D objects are extracted from 3D city

models in the format of CityGML, an open data model
and XML-based format for the storage and exchange of vir-
tual 3D city models widely used by the geographic commu-
nity. It extends XML by adding sets of primitives, includ-
ing topology, features, and geometry, as well as constraints
specific to cities. Example 3D object classes in CityGML
include buildings, tunnels, bridges, and water bodies. For
every 3D object class, CityGML has a hierarchical model
complexity system from LoD1 ( Levels of Detail) to LoD4.
A LoD1 building, for example, is represented by a hori-
zontal polygon with a height, which essentially defines an
elevated footprint. A LoD2 building or building part will
have a geometrically simplified outer shell represented by
horizontal and vertical outer surfaces as well as simplified
roof shapes. Surfaces also have semantic information, in-
cluding ground, wall, roof, outer ceiling, outer floor, and
virtual closure surfaces. LoD3 buildings have more com-
plex outer shells represented by detailed outer surfaces and
detailed roof shapes, most notably with windows and doors

Table 1. New York City Building Mesh Statistics

height area volume #F #V
avg 8.4 156.6 2228.0 12.1 19.2
std 6.3 514.8 1.9×104 13.4 24.3
min 0.3 0.0 0.0 1 4
25% 5.9 64.4 478.6 7 10
50% 8.0 91.9 732.3 10 14
75% 9.4 125.1 1085.0 14 22
max 377.6 1.1×105 3.5×106 3093 5148

(i.e. holes in surfaces). Finally, LoD4 buildings have inte-
rior semantic objects such as furniture.

We collect CityGML city models from free 3D geospa-
tial datasets publicly available on the Internet. Most of these
models have LoD2 complexity, although we do notice city
models of LoD1 or other 3D formats and skip them. At
the moment, we have collected CityGML data of 63 major
cities around the world, of which 54 are from Germany and
9 from other countries. Apart from New York and Montreal,
all the others cities are in Europe. Data qualities can vary.
Only 76% of Zurich buildings have valid CityGML surfaces
(the other 24% have non-planar and duplicated surfaces, vi-
olating the CityGML format standard, requiring more data
cleaning), while over 99% of buildings have valid geometry
in New York City (NYC).

We thus choose NYC as the focus of our current release
because of its high data quality. Our work is based on a pub-
lished dataset by NYC [12]. In total, we extract 955, 120 in-
dividual polygon mesh building models through parsing the
raw CityGML data. We then triangulate polygon meshes to
acquire 955, 023 traingular meshes, use Poisson disk sam-
pling to acquire 953, 058 point clouds of size 4096×3 from
triangular mesh, and use the open source program binvox
[8] to acquire 955, 120 building voxels of size 2563.

Semantic information of buildings are preserved in poly-
gon meshes through adding class labels to each surfaces as
comments in the .obj files in our dataset. There are 3 cate-
gories for building surfaces: GroundSurface, RoofSurface,
and WallSurfaces. Statistics demonstrating variations in the
dataset is shown in Table 1. As can be seen from the number
of vertices and faces, some building shapes are highly com-
plex with thousands of faces, while others have far fewer,
adding learning challenges.

4. Benchmark

How to justify our dataset by evaluating its differences
against other popular datasets? Qualitatively, one unique
property of our dataset is the geometrically highly con-
strained shapes. For example, most buildings have vertical
walls, piece-wise planar surfaces, but some have intricate
details (e.g. the Empire State Building compared to a town
house). This would pose a challenge for suitable represen-



Figure 2. Detailed views of 3D building shapes in New York, U.S.

Table 2. Benchmark of point cloud generation on two datasets.

RealCity3D JSD Coverage MMD
Raw-GAN 0.068 47.6 0.061

Latent-GAN [1] 0.024 57.3 0.088

ShapeNet[3] JSD Coverage MMD
Raw-GAN 0.176 52.3 0.0020

Latent-GAN [1] 0.020 68.9 0.0018

tations of buildings that would facilitate 3D learning.
To quantitatively show this difference, we compare Re-

alCity3D with ShapeNet in terms of properties related to
3D generation by training and testing the same generative
model on both datasets independently. The rationale is if
the same generative model performs differently on the two
datasets, this would indicate the two datasets have different
properties related to 3D shape generations, thus highlight-
ing the uniqueness of our datasets. In Table 2, we report
results using the same evaluation criteria as in [13]:

Jensen-Shannon Divergence (JSD) is a classic mea-
sure of the similarity between two data distributions. A
point cloud’s distribution is calculated by counting number
of points in a voxel grid. Here we calculated the JSD be-
tween real and generated point clouds.

Coverage measures the fraction of generated point
clouds that are matched to training point clouds.

Minimum Matching Distance (MMD) measures the fi-
delity of a set of point clouds A to another set B by reporting
the average distance in minimum distance matching.

In addition, we trained FoldingNet [17], a 3D shape
Auto-Encoder, on RealCity3D, and qualitatively demon-
strated the challenge it faces in reconstructing the 3D build-
ing shape, as shown in Figure 3.

5. Future Work

We are actively working on the following:
• Extend the dataset to include more cities, such as

Zürich and Montreal.
• Extend the dataset to include more shape categories

than building, such as road, bridges, etc.
• Benchmark more 3D deep learning algorithms (mainly

unsupervised ones) on this RealCity3D.
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Figure 4. Some shape generation results of Latent-GAN [1] trained on RealCity3D. It can be seen that the reconstructions lost many
important geometric details and variations of the 3D building shapes. This suggests again that the RealCity3D dataset is non-trivial.
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